Eta - Product Η ( 7 Τ ) 7 / Η ( Τ )

نویسنده

  • KYOJI SAITO
چکیده

Let LΦ7(s) be the Dirichlet series associated to the eta-product η(7τ)/η(τ)∈M3(Γ0(7), ε) (here ε(n) := ( n 7 ) = (−7 n ) is the Dirichlet character defined by the residue symbol). We show that LΦ7(s) decomposes into the difference of two L-functions: LΦ7(s) = 1 8 ( L(s, ε)L(s− 2, 1)− L(s− 1, ξ)), where i) L(s, ε) and L(s, 1) are Dirichlet L-functions for the characters ε and 1 modulo 7, respectively, and ii) L(s, ξ) is the L-function for a Hecke character ξ of the imaginary quadratic field Q( √−7). This expression of LΦ7(s) gives a new proof of the non-negativity of the Fourier coefficients of the product η(7τ)/η(τ), conjectured in [S3] and proven by Ibukiyama [I]. We also prove the uniqueness of the above decomposition of LΦ7(s) in a suitable sense.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Algorithm to Prove Algebraic Relations Involving Eta Quotients

In this paper we present an algorithm which can prove algebraic relations involving η-quotients, where η is the Dedekind eta function. 1. The Problem Let N be a positive integer throughout this paper. We denote by R(N) the set of integer sequences r = (rδ)δ|N indexed by the positive divisors δ of N ; r̃ = (r̃δ)δ|N is defined by r̃δ := rN/δ. For r ∈ R(N) we define an associated η-quotient as f(r)(τ...

متن کامل

Symmetries of WDVV equations

We say that a function F (τ) obeys WDVV equations, if for a given invertible symmetric matrix η and all τ ∈ T ⊂ R, the expressions c α β γ(τ) = η cλβγ(τ) = η∂λ∂β∂γF can be considered as structure constants of commutative associative algebra; the matrix ηαβ inverse to η αβ determines an invariant scalar product on this algebra. A function x(z, τ) obeying ∂α∂βx (z, τ) = zc ε α β∂εx (z, τ) is call...

متن کامل

A Normal Higher-Order Termination

ion by fresh free variables is the main tool to obtain a rigid system from one which is not, therefore explaining our notation RA. Example 8.5. Consider the system R = {f(λx.h(@(H, c(x)))) → g(H)}, in which H : α→ β is the only free variable. R can be abstracted by RA = {f(X)→ g(X), h(Y )→ Y, c(z)→ z} The rule in R is abstracted by the rule f(X) → g(X) added to RA with {X 7→ λz.h(@(H, c(z)))} a...

متن کامل

Some Curvature Properties of ( LCS ) n - Manifolds

and Applied Analysis 3 aR (X, Y) ξ + b [S (Y, ξ)X − S (X, ξ) Y +g (Y, ξ) QX − g (X, ξ) QY] − τ n [ a n − 1 + 2b] [g (Y, ξ)X − g (X, ξ) Y] = 0. (24) Here, taking into account of (16), we have [η (Y)X − η (X)Y] [a (α 2 − ρ) + b (n − 1) (α 2 − ρ) − τ n ( a n − 1 + 2b)] + b [η (Y]QX − η (X)QY] = 0. (25) Let Y = ξ be in (25); then also by using (18) we obtain [−X − η (X) ξ] [a (α 2 − ρ) − τ n ( a n ...

متن کامل

42 7 v 2 1 4 O ct 1 99 9 IJS - TP - 99 / 08 The role of K ∗ 0 ( 1430 ) in D → PK and τ → KPν τ decays

We consider the scalar form factor in the weak current matrix element < PK|jμ|0 >, P = π, η, η′. It obtains the contributions from the scalar meson resonance K∗ 0(1430) and from the scalar projection of the vector meson K∗(892) resonance. We analyze decay amplitudes of the Cabibbo suppressed decays D → KP , P = π, η, η′ using the factorization approach. The form factors of the relevant matrix e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006